

An Implementation of CCSDS 122.0-B-1 Recommended Standard
Mar. 18, 2008

Hongqiang Wang.

1. Disclaimer

(1) Before you download and use the program, you must read the license file and accept the

terms and conditions.

(2) We provide the source code and the software WITHOUT ANY WARRANTIES. The users

will be responsible for any lose or damage caused by the use of the source code and the

software.

2. Author and contact information

Hongqiang Wang

PhD candidate & Research assistant

Department of Electrical Engineering

University of Nebraska-Lincoln

Tel: 402-472-1973

Fax: 402-472-4732

Email: hqwang@bigred.unl.edu, hqwang@eecomm.unl.edu

Comments and suggestions are welcome. Please send me emails if you have questions or find

bugs. I would try my best to answer and greatly appreciate your efforts to make this program

better.

3. Acknowledgment

This project has been supported by a funding from NASA, and the Department of Electrical

Engineering, the University of Nebraska-Lincoln (UNL). The development and test of the software

would not be successful without the help of Dr. Pen-Shu Yeh at NASA. We have been working

very closely throughout the software test process. I am grateful for her great patience and

thorough guidance. I also appreciate my advisor Dr. Sayood Khalid for his encouragement and

guidance, especially in the early stage of this project. Thanks also go to Dr. Mark Bauer, who

helped us set up and configure the web server to make the website work nicely.

4. Compression Program Description

We present some basic information on the implementation of the data compression scheme. This

program is developed based on the Blue Book 122.0-B.1 by the CCSDS released on March 31,

2006. For more details on the compression recommendation, please visit www.ccsds.org. For

more details on the program, please look into the source code that is downloadable at

http://hyperspectral.unl.edu. Users can run and test the code from the web server directly. Or,

users can download source code and executable code, and test by themselves.

The program is developed and tested with Microsoft Visual C++ 2005 in Windows XP. It has been

tested under Linux Fedora 5.0 as well.

4.1. Files

The program contains 3 header files, and 18 C files.

Three header files:

getopt.h:

This file is obtained for free under GNU General Public License

tailor.h:

This file is obtained for free under GNU General Public License

These two files are the header files for getopt.c. getopt.c is to extract the coding parameters from

the string in the command line. So basically these two files do not have direct link with the

compression.

global.h:

This file defines the macro variables, structure, and types that are globally used in the

coder. Some global functions are also defined.

The C files have many functions defined, which will be listed in later section. So here we do not

list the files.

4.2. Structures and Union

The definitions of structures are in bold capital letters.

SYMBOLDETAILS

This records the value, mapping value, length, sign, and type of a symbol. This is used

for the bit plane coding.

BITSTREAM

This structure contains the information of bit stream, including the total number of bits in

current segment, the total number of bits output so far; byte buffer; and the number of bits

in a byte that have filled, and FILE type for bit stream output. This one is used throughout

the encoding and decoding process.

TYPEC

Record the type of children subblock.

TRANH

Record the transition to grandchildren subblock.

TRANHI

Record the transition to grandchildren subblock Hi.

TYPEHIJ

Record the type of grandchildren subblock Hij.

PARENTREFINE

Record the refine bits of parent subblock.

CHILDRENREF

Record the refine bits of children subblock.

GRANDCHILDREDREF

Record the refine bits of children subblock.

REFINEMENTBIT

Record all refine bits in a block, i.e., including PARENTREFINE, CHILDRENREF, and

GRANDCHILDREDREF.

PLANEHIT

Record all type bits and transitional history.

BLOCKBITSHIT

Record all coding information of a block, including DC, AC, mapping, maximum AC depth,

and some coding structures defined above.

HEADER_STRUCTURE_PART1

Part 1 structure of header structure.

HEADER_STRUCTURE_PART2

Part 2 structure of header structure.

HEADER_STRUCTURE_PART3

Part 3 structure of header structure.

HEADER_STRUCTURE_PART4

Part 4 structure of header structure.

HEADER

Consists of the above 4 header structures.

STR_STOPLOCATION

Structure to record the partial decoding locations. Used for decoding only.

CODINGPARAMETERS

Contains all coding parameters, image information, files to output and input, rate to be

reached.

BLOCKSTRING

For decoding only. A link will be built to record the decoded blocks. The link is

reorganized and reconstructed using inverse wavelet transform (IWT).

There is one UNION type:

HEADERUNION

This is to save storage space and facilitate some operations.

4.3. Functions

ACBpeDecoding

AC component decoding. Called by DecoderEngine.

ACBpeEncoding

AC component decoding. Called by EncoderEngine.

ACDepthEncoder

ACdepth encoding. Called by ACBpeEncoding.

ACDepthDecoder

ACdepth decoding. Called by ACBpeDecoding.

ACGaggleEncoding

This is for AC encoding of gaggles. Called by ACDepthEncoder.

ACGaggleDecoding

This is for AC decoding of gaggles. Called by ACDepthDecoder.

AdjustOutPut

Called by DecoderEngine(StructCodingPara *PtrCoding).

BitPlaneSymbolReset

Reset the symbols in the bitplane structure. Called by StagesEnCodingGaggles1,

StagesEnCodingGaggles2, and StagesEnCodingGaggles3.

BitsOutput

Outputs bits to buffer and files. For encoding only.

BitsRead

Read bits to buffer and files. For decoding only.

BlockScanEncode

Kernel part of the bit plane coding. It determines the type of subblocks and transitional

bits. Called by ACBpeEncoding only.

BuildBlockString

This is to build block string index for further encoding. Called by EncoderEngine only.

CheckUsefill

This is to check if UseFill is enabled, and if so, how many bits need to fill. Called by

ACBpeDecoding only.

CodingOptions

This is to determine the coding parameters of Golomb-Rice decoding. Called by

StagesEnCoding only.

CoeffDegroup

Reorganize back into the block ready for inverse wavelet transform. Called by

DecodingOutputInteger only.

CoeffDegroupFloating

Reorganize back into the block ready for inverse wavelet transform. called by

DecodingOutputFloating only.

CoefficientsRescaling

Rescale the coefficients before inverse DWT, called by DWT_Reverse only.

CoefficientsScaling

Rescale the coefficients after DWT, called by DWT_ only.

CoeffRegroup

Reorganize the transform coefficients into the blocks after wavelet transform. Called by

DWT_ only.

CoeffRegroupF97

Reorganize the transform coefficients (float) into the blocks after wavelet transform.

Called by DWT_ only.

ConvTwosComp

DC into 2’s complement representation. Called by DCEncoding only.

DCDeCoding

DC decoding, called by DecoderEngine only.

DCEncoder

DC entropy encoding, called by DCEntropyEncoder only.

DCEncoding

DC encoding, called by EncoderEngine only.

DCEntropyDecoder

DC entropy decoding, called by DCDeCoding only.

DCEntropyEncoder

DC entropy encoding, called by DCEncoding only.

DCGaggleDecoding

DC decoding in a gaggle, called by DCEntropyDecoder.

DebugInfo

Output debug information.

DecoderEngine

Kernel function for decoding, called by main only.

DecodingOutputFloating

Output the floating point DWT decoding results, called by DecoderEngine only.

DecodingOutputInteger

 Output the integer DWT decoding results, called by DecoderEngine only.

DeConvTwosComp:

Convert coefficients back from 2 s complement representation to normal, called

byAdjustOutPut only.

DeMappingPattern:

Demap the decoded symbols back to its original value. Called by

StagesDeCodingGaggles1, StagesDeCodingGaggles2, StagesDeCodingGaggles3

DPCM_ACDeMapper

Demap the decoded ACdepth back to its original value. Called by ACDepthDecoder.

DPCM_ACMapper

Map the ACdepth from double (negative and positive) side value to positive value. Called

by ACDepthEncoder.

DPCM_DCDeMapper

Demap the decoded DC value back to its original value. Called by DCDeCoding.

DPCM_DCMapper

Map DC from double (negative and positive) side value to positive value. Called by

DCEncoding.

DWT_

DWT transform, called by EncoderEngine only.

DWT_Reverse

Inverse DWT transform, taking integer input,called by DecoderEngine only.

DWT_ReverseFloating

Inverse DWT transform, taking floating input, called by DecoderEngine only.

EncoderEngine

The kernel function for decoding, called by main only.

ErrorMsg

This is to output error code to a file and standard terminal.

forwardf97f

 Forward transform of floating 97.

forwardf97M

Forward transform of integer 97.

HeaderInitialize

Initialize the header before coding. Called by main only.

HeaderOutput

Output the header. For each segment, header will be output. Called by DCEncoding.

HeaderReadin

Read the header from the coded bit stream. Called by DecoderEngine.

HeaderUpdate

Header is updated after the coding of a segment and ready for the coding of next

segment called by EncoderEngine only.

ImageRead

 Open an image to read. Called by EncoderEngine.

ImageSize

 Determine the image size. Called by EncoderEngine.

ImageWrite

Output the decoded image. Called by DecodingOutputInteger.

ImageWriteFloat

Output the decoded image (in floating mode) DecodingOutputFloating(StructCodingPara

*PtrCP, float **imgout_floatingcase).

inversef97f

inverse floating DWT transform.

inversef97M

inverse integer DWT transform.

lifting_f97_2D

lifting algorithm of floating 97 DWT transform.

lifting_M97_2D

lifting algorithm of integer 97 DWT transform.

main:

main function.

OutputCodeWord

Output a codeword. Called by BitsOutput (StructCodingPara *Ptr, DWORD bit, int length).

ParameterValidCheck

Called by main to verify the coding parameters are valid.

PatternMapping

Map the original symbol to new one according to table. Called by CodingOptions.

RefBitsDe

Get refine bits from the coded bit stream, called by StagesDeCoding.

RefBitsEn

Output refine bits from the coded bit stream, called by StagesDeCoding.

RiceCoding

Rice encoding based on the coding parameters. Called by StagesEnCodingGaggles1,

StagesEnCodingGaggles2, and StagesEnCodingGaggles3.

RiceDecoding

Rice decoding based on the coding parameters. Called by StagesDeCodingGaggles1,

StagesDeCodingGaggles2, and StagesDeCodingGaggles3.

SegmentBufferFlushDecoder

Flush the leftover bits in a segment coding and reset the byte alignment for the coding of

next segment. Called by EncoderEngine.

SegmentBufferFlushEncoder

Flush the leftover bits in a segment decoding and reset the byte alignment for the

decoding of next segment. Called by DecoderEngine.

StagesDeCoding

 Perform the three stages bit plane decoding.

ACBpeDecoding

 AC decoding.

StagesDeCodingGaggles1

Bit plane Decoding of stage 1, Called by StagesDeCoding.

StagesDeCodingGaggles2

Bit plane Decoding of stage 2, Called by StagesDeCoding.

StagesDeCodingGaggles3

Bit plane Decoding of stage 3, Called by StagesDeCoding.

StagesEnCodingGaggles1

Bit plane encoding of stage 1, Called by StagesEnCoding.

StagesEnCodingGaggles2

Bit plane encoding of stage 2, Called by StagesEnCoding.

StagesEnCodingGaggles3

Bit plane encoding of stage 3, Called by StagesEnCoding.

TempCoeffOutput

 Temporal coefficients output, for debug purpose.

4.4. Coding Parameters in Command Line

If the source files have been compiled and the executable file is generated, the program can be

run as follows (assume the executable file is called bpe):

• bpe [-e InputImageName] [-d CompressedFileName] (-o OutputFileName) [-r

BitsPerPixel] [-w ImageRows] [-h ImageColumns] [-b BitsPerPixel] [-f ByteOrder] [-

g UnSigned] [-t TypeOfDWT] [-s BlocksInSegment]

Note that the parameters are not case-sensitive. [] means the parameters are optional, and ()

means they are mandatory. The order of these parameters is arbitrary.

Parameters:

• [-e InputImageName]: Take a raw image file called InputImageName for encoding. (for

encoding only)

• [-d CompressedFileName]: Take a compressed file called CompressedFileName for

decoding. For decoding only. Note that [–e] cannot not be used with this one at the same

time. (for decoding only)

Note that one of above two parameters must be provided.

• (-o OutputFileName): Output a file called OutputFileName. It takes character string. If

this is used with [–e], filename is for the compressed bitstream. If this is used with [-d],

then output the decoded image. (This is for both encoding and decoding, and mandatory)

• [-r BitsPerPixel]: desired compression ratio (bits/pixel). This parameter is valid for

encoding and some decoding scenarios.

1) For encoding, the encoder will compress the image to this rate if possible. There are

two extreme conditions to be clarified: If the ratio specified is too small, error will be

reported. A valid ratio depends on the header, segment size, etc. For example, if the

ratio is so small that the header has not been fully output, coding error will be

reported. If the ratio is too large, i.e., the lowest bit plane has been coded but ratio is

still not achieved, the coding may stop, or fill some 1s, dependent on the parameter

UseFill in the header.

2) For decoding, this parameter is for embedded decoding. If the ratio is greater than

the actual ratio of the image coded, the decoder will decode to the actual ratio. If the

ratio is less than the ratio of encoding, the decoder will work until reaching this ratio

and then discard the rest bits in the current coding segment. And decoder then

continues to decode the next segment, as long as the decoder knows where the next

segment starts. That is, for success of embedded decoding, the decoder needs to

know the packet size, which can be defined in the header. If SegByteLimit in the

header is non-zero and UseFill is true, the decoder knows the exact location in the

bit stream of each segment and embedded decoding can be carried out.

• [-b OriginalBitsPerPixel]: the number of bit of a pixel. By default it is 8. We can only

handle up to 16 bits/pixel. So this parameter must be less than or equal to 16. (for

encoding only)

• [-w ImageRows]: the number of pixels in a row. (for encoding only)

• [-h ImageColumns]: the number of pixels in a column. (for encoding only)

Ideally, the number of rows and columns are integer multiples of 8. This would

facilitate the wavelet transform and block grouping. However, this requirement is not

mandatory.

This program could handle odd-sized raw images, i.e., the number of rows and

columns of the raw image are not necessarily integer multiples of 8. If they are not, we

simply replicate the last row or the last column until they are integer multiples of 8.

These two parameters along with the bytes/pixel will be used to verify if the image

size is correct. If the ImageRows * ImageColumns * OriginalBitsPerPixel is not the

same as the image size, error will be reported.

These parameters are for encoding only. For decoding, the coder can determine the

image size by examining the information in header and therefore it is not necessary to

specify the image dimension.

• [-f ByteOrder]: byte order of a pixel, taking 0 or 1. If a pixel consists of 2 bytes, we need

the exact byte order. 0 means litttle endian, 1 means big endian. Default value is 1. If

bits/pixel of the image is less than 8, this option is not necessary (for encoding only).

• [-g Signed] The pixels are unsigned or signed. By default it is unsigned. If 1, pixels are

signed. Or it is unsigned.

• [-t TypeOfDWT]: type of discrete wavelet transform, taking 0 or 1. 1 represents integer 9-

7 DWT and 0 represents floating 9-7 DWT. By default, coder takes integer 9-7 DWT. (for

encoding only)

• [-s BlocksInSegment]: the number of blocks in each segment. Default value is 256. This

value has to be greater than or equal to 16. If it is less than 16, error may occur. And this

value should not exceed the maximum number of blocks of the image. (for encoding only)

Example 1: bpe -e sensin.img -o codes -r 1.0 –w 256 –h 256 –s 64 –b 8 –t 0

This is to encode a raw image called sensin.img (256 X 256, 8bits/pixel, unsigned) with

floating 9-7 DWT, 64 blocks in segment, a desired compression ratio of 1.0bits/pixel, and

an output filename called codes.

Example 2: bpe -d codes -o ss.img

This is to decode a compressed file called codes, and output the reconstructed raw

image into a file called ss.img.

4.5. Other Coding Parameters

The compression recommendation defines some coding parameters that users can adjust to

accommodate their applications. The parameters in the command line are critical. However, to

take advantage of its flexibility, it is better to check the parameters that are defined in header (see

function HeaderInitialize). This function is to initialize coding parameters. Note that not all coding

parameters can be adjusted by users. A portion of them depend on the coding process. Some of

them can be specified by users, but they cannot be changed once coding starts, such as the

coding parameters in header 4. For the parameters that users can modify, please refer to the

recommendation. For reference, we build tables to list the parameters and their default (or initial)

values in our implementation. Note that all reserved bits are set to 0.

Table 1: fields in header part 1 and their default (or initial) values

Field Default value
 (or initial
value)

Description

StartImgFlag 1 Flag this is the first segment. After first segment, this will be
turned to 0

EndImgFlag 0 Flag this is not the last segment. Once the coder determines
this is the last segment, this will be turned to 1

SegmentCount 0 Segment count value (mod 256), from 0 to 255.

BitDepthDC 0 This will be updated by coder after the coder analyzes the
DCs in the segment.

BitDepthAC 0 This will be updated by coder after the coder analyzes the
ACs in the segment.

Part2Flag 1 Indicate Header part 2 will be present

Part3Flag 1 Indicate Header part 3 will be present

Part4Flag 1 Indicate Header part 4 will be present

PadRows 0 This will be present only when EndImgFlag becomes 1.

In the first segment, Part2Flag, Part3Flag, and Part4Flag are initialized to 1. After the first

segment, these 3 parameters are flagged to 0 (see function: headerupdate) in our implementation. Note

that usually head part 4 is not changeable in the entire coding process. Therefore Part4Flag should be 0

after first segment.

Table 2: fields in header part 2 and their default (or initial) values

Parameter Default value Description

SegByteLimit 0 No byte limit in segment.

DCStop 0 Will not stop coding after DC is coded. If this is 1, coding of
this segment stops once DC is coded.

BitPlaneStop 0 The bit plane at which the coder will code and then stop. If
this is 0, coder will complete coding of all bit planes.

StageStop 3 The stage in which that the coder will code and then stop. If
this is 3, then coder will complete all stages.

UseFill 0 If SegByteLimit is 0, this must be 0. Otherwise, this can be 0
or 1.

Table 3: fields in header part 3 and their default (or initial) values

Parameter Default value Description

S 256 256 blocks in a segment

OptDCSelect

1 Use the optimized method to choose the coding parameter

for coding of DC.

OptACSelect

1 Use the optimized method to choose the coding parameter

for coding of AC.

Table 4: fields in header part 4 and their default (or initial) values

Parameter Default value Description

DWTtype

1 Integer 9-7 DWT, if 0 floating DWT

 PixelBitDepth

8 8 Bits/pixel. If this is 0, 16 Bits/pixel

ImageWidth 2048

This will be updated from command line

TransposeImg

0 Not transpose

SignedPixels 0

Unsigned.

CodeWordLength

0 8-bit word

CustomWtFlag

0 No custom weighting factor

CustomWtHH1

1

These are the default custom weighting factors for

different sub bands. If CustomWtFlag is 0, all these will be

set to 0.

CustomWtHL1

 CustomWtLH1

 CustomWtHH2

2

CustomWtHL2

 CustomWtLH2

 CustomWtHH3

3

 CustomWtHL3

 CustomWtLH3

4.6. Quality-mode

The coder can work in quality-mode so that users can specify whether the coding stops after DCs

are done, or at certain bit planes, or in some particular stage stages. The quality-mode provides a great

flexibility to meet the needs of various applications.

The parameters defined in the header part 2. DCStop, BitPlaneStop, and StageStop in Table 2

can be adjusted to make the coder run under quality-mode. All these parameters can be modified in

header.c. For each segment to be coded, the three parameters work in the way as follows:

• If DCstop is set to 1, then only DCs are coded, and all bit planes in the segment will be

ignored. If it is set to 0, coding of this segment will continue after DC is coded.

• By setting BitPlaneStop to nonzero value, the coder will stop coding after BitPlaneStop
th

bit plane is coded. BitPlaneStop occupies 5 bits so that user can specify up to 31

individual bit planes.

• For StageStop (2 bits), the coder will stop if the StageStop stage is done. If StageStop is

3, all stages will be coded. There are 4 stages totally and so user can specify any stage

other than 3 to terminate the stage coding earlier.

